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Mutations in the SPARC-Related Modular
Calcium-Binding Protein 1 Gene, SMOC1,
Cause Waardenburg Anophthalmia Syndrome

Hana Abouzeid,1,2,7 Gaëlle Boisset,1,7 Tatiana Favez,1 Mohamed Youssef,3 Iman Marzouk,3

Nihal Shakankiry,4 Nader Bayoumi,4 Patrick Descombes,5 Céline Agosti,1 Francis L. Munier,1,2

and Daniel F. Schorderet1,2,6,*

Waardenburg anophthalmia syndrome, also known as microphthalmia with limb anomalies, ophthalmoacromelic syndrome,

and anophthalmia-syndactyly, is a rare autosomal-recessive developmental disorder that has been mapped to 10p11.23. Here we

show that this disease is heterogeneous by reporting on a consanguineous family, not linked to the 10p11.23 locus, whose two affected

children have a homozygous mutation in SMOC1. Knockdown experiments of the zebrafish smoc1 revealed that smoc1 is important in

eye development and that it is expressed in many organs, including brain and somites.
Anophthalmia describes a rare developmental anomaly in

which the eye is absent as the result of a deficiency in the

development of the primary optic vesicles. Severe micro-

phthalmia occurs at a prevalence of 3 in 10,000. Micro-

phthalmia can be isolated or syndromic. Genetic studies

of isolated cases have identified mutations in, among

others, RAX,1 VSX22 (MIM 142993) PAX63 (MIM

607106), MITF4 (MIM 156845), MAF5 (MIM 177075),

OTX26 (MIM 600037), SOX27 (MIM 184429), and SIX68

(MIM 606326). All these genes play a role in early ocular

development. Mutations in members of the Wnt signaling

and TGF-b1 (MIM 190180) superfamily, including

members of the bone morphogenetic proteins and

growth-differentiation factors, have also been impli-

cated.9,10 For recent reviews, see 11–13. More recently,

TMX3, a member of the thioredoxin family of proteins,

was shown to be mutated in unilateral microphthalmia.14

At least ten forms of syndromic microphthalmia

have been reported so far: MCOPS1 (MIM 309800), Lenz

microphthalmia;15 MCOPS2 (MIM 300166), oculo-facio-

cardio-dental syndrome;16 MCOPS3 (MIM 206900), anoph-

thalmia-esophageal-genital syndrome;7 MCOPS4 (MIM

301590), microphthalmia-ankyloblepharon-mental retar-

dation;17 MCOPS5 (MIM 610125), microphthalmia-optic

nerve agenesis, corpus callosum agenesis, joint laxity;6

MCOPS6 (MIM 607932), microphthalmia-pituitary anoma-

lies;18 MCOPS7 (MIM 309801), microphthalmia-dermal

aplasia-sclerocornea;19 MCOPS8 (MIM 601349), micro-

cephaly-microphthalmia-ectrodactyly of lower limbs-prog-

nathism;20 and MCOPS9 (MIM 601186), pulmonary

agenesis, microphthalmia-diaphragmatic defect.21 Several

of these entities have overlapping phenotypes, andwhether

they all represent different syndromes remains to be shown.
1IRO - Institute for Research in Ophthalmology, 1950 Sion, Switzerland; 2Jules

of Paediatrics, Genetic Unit, University of Alexandria, Alexandria - 21526, Egy

21526, Egypt; 5NCCR ‘‘Frontiers in Genetics,’’ University of Geneva, 1211 Gen

Lausanne, Switzerland
7These authors contributed equally to this work

*Correspondence: daniel.schorderet@irovision.ch

DOI 10.1016/j.ajhg.2010.12.002. �2011 by The American Society of Human

92 The American Journal of Human Genetics 88, 92–98, January 7, 20
Forty years ago, Waardenburg reported an autosomal-

recessive anophthalmia with hand and foot malforma-

tions.22 This syndrome (Waardenburg anophthalmia

syndrome, also known as microphthalmia with limb

anomalies, ophthalmoacromelic syndrome, and anoph-

thalmia-syndactyly [MIM 206920]) is characterized by

unilateral or bilateral microphthalmia, clinical anophthal-

mia, syndactyly, polydactyly, synostosis, and/or oligodac-

tyly. In addition, other organs may be affected (long-

bone hypoplasia; renal, venous, and vertebral anomalies).

Most patients are mentally retarded and are born from

consanguineous parents. Since the first description by

Waardenburg, more than 35 cases have been identi-

fied.22–30 Recently, Hamanoue et al. used homozygosity

mapping to identify a 433 kb homozygous region on chro-

mosome 10p11.23 between STS9 and STS12, but no

mutated gene was identified.31

We report on a consanguineous family of Egyptian origin

with four children, two of whom are affected with Waarden-

burg anophtalmia syndrome (Figure 1). The first child

(V.2 in Figure 1), born to healthy parents, was a 12-yr-old

girl when last seen at our clinics. At birth, her father (IV.7)

was 33 yr old and her mother (IV.8) 30 yr old. The second

affected child (V.4) was 8 yr old. Both were born at full term

after an uneventful pregnancy and anuncomplicated vaginal

delivery. Birthweightswerewithin normal limits, but lengths

are unknown. Both had global delay in developmental mile-

stones: responsive smile was first seen at 10 and 8 mo in

patients V.2 and V.4, respectively, and they walked at 3 yr.

A Binet test performed on V.4 at 7 yr of age gave a score of

80, and her older sister was similarly mentally retarded.

On clinical examination, both had broad lateral eyebrows,

sparse eyelashes, short palpebral fissures, and bilateral
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Figure 1. Clinical and X-Ray Evaluation
of the Patients
(A) Image of the orbit of patient V.2. Note
the short palpebral fissure, broad lateral
eyebrows, and sparse eyelashes.
(B) Transpalpebral ultrasonography (12
MHz) in the same child, showing the
absence of eye or cystic remnants.
(C) Hands of the same patient, with prox-
imal placement of thumb, and F5 radial
clinodactyly.
(D) X-ray images of the hands, high-
lighting proximal placement of the
thumb, F45 osseous syndactyly, F5 radial
clinodactyly, and fusion of the capitate
and hamate carpal bones.
(E) Feet of the same child, showing an
absent ray with sandal gap and pes pla-
num.
(F) X-rays of the feet showing, in addition,
bilateral partial fusion of both the middle
and the medial cuneiform bones.
anophthalmia (Figure 1A). Transpalpebral ultrasonography

(12 MHz) (Figure 1B) and ultrasound biomicroscopy (50

MHz) confirmed the absence of an eye globe in both affected

individuals, and no cysts were observed. Clinically observed

skeletal abnormalities included malar flattening, a high

palate, bilateral proximal placement of the thumb, bilateral

F45 osseous syndactyly, bilateral F5 radial clinodactyly, bilat-

eral camptodactyly of F15 (Figures 1C and 1D), an absent

ray in both feet with sandal gap and pes planum (Figure 1e),

and mild scoliosis in both affected children. Hand and wrist

X-rays (Figure1D) revealed fusionof thecarpalbones (capitate

and hamate). Elbow X-rays were normal. X-rays of the feet

(Figure 1F) and legs showed bilateral partial fusion of both

middle and medial cuneiform bones, an absent ray, and

normal tibia and fibula. These features were common to

both patients. Orbital and brain MRI scans were performed

in both girls as well. No eye globe or cysts were reported on

orbital MRI, but extraocular muscles normal in signal and

size were present. On brain MRI, complete absence of the

optic nerves, chiasma, and optic tracts was observed, and no
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other malformations were noted, espe-

cially of the corpus callosum and pitui-

tary gland. The karyotype was normal

(46,XX) in both patients, as was the

renal ultrasound examination. The

pedigree is described in Figure 2. This

study was approved by the ethics

committees of the Faculty of Medicine,

University of Alexandria and the

Faculty of Biology and Medicine,

University of Lausanne.

Homozygous mapping via the

Human660W-Quad DNA Analysis

BeadChip (Illumina) was performed

on individuals IV.7, IV.8, V.2, V.3,
and V.4. We first concentrated on the region around

the membrane protein palmitoylated 7 gene (MPP7

[MIM 610973]) that was reported to be a potential candi-

date on chromosome 10.31 However, the largest homozy-

gous stretch of DNA in that region was only 60 kb. There-

fore, the molecular anomaly involved in the family that

we describe must be located elsewhere. Analysis of the

rest of the data identified several homozygous regions in

the genome of the patients, but many were also present

in the nonaffected sibling and were therefore discarded.

Three regions of homozygosity larger than 1 Mb and

specific to the two patients were identified (Table S1, avail-

able online). The largest region was located between

rs11158442 (position 62,198,792) and rs4899594 (posi-

tion 76,031,821), defining a 14 Mb region on chromo-

some 14q23. Two genes in which mutations had already

been implicated in microphthalmia and anophthalmia,

BMP4 (MIM 112262) and OTX2 (MIM 600037), were

located close to the homozygous region but were clearly

outside of it.6,32 According to Ensembl, this interval
n Genetics 88, 92–98, January 7, 2011 93



Figure 2. Pedigree and Mutation Anal-
ysis
(A) Pedigree showing consanguinity.
(B) Electropherogram of part of SMOC1
exon 3 showing normal (1), heterozygous
(2), and homozygous (3) c.378þ1G>T
mutation.
contains more than 100 protein-coding sequences. As its

name implies, the ophthalmo-acromelic syndrome shows

aberration in the development of the eyes and bones. We

therefore restricted the list of candidate genes to those ex-

pressed in the eyes, bones, and connective tissue. Expres-

sion of each candidate was checked in the EST profile of

the UniGene database. Thirty-three genes passed this

filter. Among these genes, MPP5 (MIM 606958), RDH11

(MIM 607849), ZFP36L1 (MIM 601064), SRSF5 (MIM

600914), SMOC1 (MIM 608488), and ZFYVE1 (MIM

605471) were further evaluated. MPP5

(ENSG00000072415) is a member of the peripheral

membrane-associated guanylate kinase (MAGUK) family

and may play a role in tight junction formation and

cell-polarity establishment. Interestingly, MPP7, another

member of the MAGUK family, was the only gene identi-

fied in the locus reported by Hamanoue et al.31 RDH11

(ENSG00000072042) is implicated in the reduction of

all-trans-retinal, a molecule with high relevancy to the

eye. The zinc finger protein 36, C3H type-like 1 gene

(ZFP36L1 [ENSG00000185650]) is a member of the

TIS11 family of early-response genes and is induced by,

among others, the polypeptide mitogen EGF. It could

thus regulate the response to growth factors. SRSF5

(ENSG00000100650) is a member of the serine- and argi-

nine-rich family of pre-mRNA splicing factors. Mutations

in splicing factors have been implicated in retinal pig-

mentosa. Zinc finger FYVE domain-containg protein 1

(ENSG00000165861) is a member of the FYVE domain

proteins. They mediate the recruitment of proteins

involved in membrane trafficking and cell signaling to

phophatidylinositol 3-phosphate-containing membranes.

Mutations in PIKFYVE, another member of the FYVE

domain proteins, are responsible for the François-Neetens

fleck corneal dystrophy (MIM 121850). Sequencing of the

exons and intron-exon boundaries of these genes did not

show any causative variants.
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However, sequencing of SMOC1

(ENSG00000198732) revealed a

c.378þ1G>T (IVS3þ1G>T) mutation

in the canonical splice donor site of

intron 3 (Figure 2). Both parents

were heterozygous for this mutation,

and the only available non-affected

child was homozygous for the normal

sequence. This mutation was looked

for in 556 control chromosomes

from individuals of Egyptian, North
African, and European descent by denaturing high-perfor-

mance liquid chromatography and was never observed.

For primers used in SMOC1 sequencing, see the Supple-

mental Data.

SMOC1 (secreted modular calcium-binding 1) is a

48 kDa secreted modular protein containing an EF-hand

calcium-binding domain and is a member of the SPARC

family of proteins characterized by the presence of follista-

tin and EF-hand calcium-binding domains.33 Analysis of

the EST profile in UniGene indicates that it is widely

expressed, including in the eyes and bones. SMOC1 has

12 exons and several large introns. Intron 3 has a size of

22.2 kb, and a mutation in the canonical G nucleotide of

the splice donor might either greatly perturb mRNA

synthesis or activate nonsense-mediated decay. Unfortu-

nately, we were unable to amplify SMOC1 by using RT-PCR

with RNA extracted from normal blood and could not

therefore investigate whether nonsense-mediated decay

was happening or whether a truncated protein with an

aberrant C terminus was generated.

SMOC1 is well conserved among various species,

including zebrafish, in which we could identify a retired

contig containing the 30 region of a putative smoc1

(LOC795519). Protein-homology analysis between human

SMOC1 and the putative zebrafish smoc1 gave an overall

score of 63%, with some regions having a score over

80%. Except for the missing (or undiscovered) signal

peptide, the putative smoc1 has a structure very similar to

that of the human (see Figure S1). It also contains an FS

domain, two TY domains, and a C-terminal SPARC

calcium-binding domain containing two EF hands.

Compared to SMOC1, smoc1 contains an additional region

coding for a 27-amino-acid-long stretch between the FS

domain and the first TY domains, as well as a second,

17-amino acid-long region situated just after the first TY

domain and before the first SMOC1-specific domain

(Figure S1). Interestingly, the SMOC1-specific domains are



Figure 3. Expression of smoc1 in Zebra-
fish
(A–D) Whole-mount in situ hybridization
experiments showing early expression of
smoc1 in the brain (arrow) and in the ante-
rior retina (arrowhead) at 10 ss and 18 ss,
respectively.
(E and F) smoc1 is localized in the ventral
retina, on both sides of the choroid fissure
at 24 hr (E), and in the pharyngeal arches
at 48 hpf (F).
(A, C, E, and F) Top and left represent
dorsal and frontal parts of the animal. (B)
and (D) are top views. Magnification:
2003.
also conserved in zebrafish. Database searching and PCR

amplifications using various primers located in the coding

regions of the gene allowed us to identify only one copy of

smoc1 in the D. rerio genome.

In order to evaluate the role of smoc1 in the develop-

ment of the eye, we first evaluated its expression in

zebrafish by in situ hybridization and then observed the

effect of a transient knockdown of its translation by using

a morpholino targeting the donor splice site of intron 3,

the location that is mutated in the patients.

On the basis of the sequence of LOC795519, we cloned,

after RT-PCR of zebrafish embryo mRNA using primers

F (50-ATGCC CTCAT CGCTT CAT-3) and R (50-CTAAC
CCTCC TTATT GACTCC-30), a 1359 bp cDNA coding for

453 amino acids. From this clone, we generated two

dioxygenin-labeled probes for in situ hybridization that

covered the 50 and 30 regions of smoc1 with primers

F100 (50-GGTTC AGACG GACGC AGTTATG-30) and

R628 (50-TCTGC CTCTC CTGGT CACAA-30 and F716

(50-GCCAC CAATC TACAG GTTAC-30) and R1063

(50-CGTGA CTGCC GTTAT TATCC-30), respectively. and

examined smoc1 expression in zebrafish embryos as

described previously.34 Expression of smoc1 by whole-
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mount in situ hybridization was first

evident at the 10-somite stage (10

ss). In the optic vesicles, transcripts

were first detected in the ventrolateral

diencephalon (Figures 3A and 3B),

then in the most anterior part of the

retina at 18 ss (Figures 3C and 3D).

At 24 and 48 hr postfertilization

(hpf), smoc1 was expressed in the

ventral retina, on both sides of the

choroid fissure (Figure 3E and 3F).

Signals were seen in the brain at 10

ss and 18 ss as well as in pharyngeal

arches at 48 hpf (Figure 3F). Func-

tional analysis of smoc1 was assessed

with the use of morpholino injec-

tions. Microinjections were per-

formed with a Femtojet (Eppendorf).

The smoc1 morpholino covering the
exon 3-intron 3 splice site (50-CCGGA ACTCT GACAG

ACCTG AGCAA-30) was synthesized by Gene Tools. For

control injections, the standard control morpholino

provided by Gene Tools was used. The stock solutions

were diluted to 750 mM in H2O with 0.1% phenol red

(Acros Organics, Brunschwig AG). Two nanoliters were

injected in the yolk at 1- to 2-cell stage. First, efficiency

of the morpholino targeting the exon 3-intron 3 splice

site of smoc1 was controlled by RT-PCR with the use of

primers F100 and R628 (Figure 4B). Additional amplicons

larger and smaller than the normal 660 bp product were

observed. They may correspond to fragments containing

part of intron 3 or abnormal splice variants. Knockdown

of smoc1 revealed microphthalmia associated with defects,

especially in the ventral retina at 2 days postfertilization

(dpf): the choroid fissure remained widely open compared

to the untreated or control morpholino-injected larvae

(Figures 4A and 4B). The coloboma was no longer detect-

able at 5 dpf, but microphthalmia was still severe, and

the retina was especially underdeveloped at the ventral

and nasal parts of the eye (Figure 4C). Smoc1 may also be

important for brain development, because defects in the

forebrain were observed at 5 dpf (Figure 4C). Pharyngeal
n Genetics 88, 92–98, January 7, 2011 95



Figure 4. smoc1 Morpholino-Treated Embryos
(A and C) smoc1 morpholino-injected embryos
at 2 and 5 dpf, respectively.
(B and D) Control morpholino-injected embryo
at 2 dpf and wild-type embryo at 5 dpf. (B)
RT-PCR (þ indicates with reverse transcriptase;
- indicates without reverse transcriptase) on
mRNA of noninjected embryos (-), embryos
injected with smoc1 morpholino (MO), or those
injected with control morpholino (MO-Ct) at
1 dpf. smoc1 knockdown revealed microphthal-
mia with defects in the ventral retina associated
with abnormalities in brain development.
Control for RNA extraction and amplification
was performed with actin (PCR primers:
50-GGGAG TGATG GTTGG CATGG-30 and
50-AGGAA GGAAG GCTGG AAGAG-30).
arches seemed to be underdeveloped as well, but additional

studies will be needed to confirm this.

The exact role of SMOC1 is still poorly understood. It

was identified through its homology with secreted protein

acidic and rich in cysteine (SPARC [MIM 182120]), also

known as osteonectin, a protein important for bone calci-

fication.35 Sparc-deficient mice show cataract and rupture

of the lens capsule around the age of 6 mo.36 SMOC1 is

localized in many tissues, where it associates with base-

ment membranes, and interaction between the FS domain

and the EC domain influences calcium binding.37 Calcium

is critical for many developmental programs and is

required for continuous function of the visual cycle, in

which, among other roles, it regulates the guanylyl cyclase

activating protein (GUCA1A [MIM 600364]), a calcium-

binding protein with four EF-hand domains. Interestingly,

Jalili syndrome (MIM 217080), another malformation

syndrome affecting ocular development and the formation

of the tooth, a tissue closely related to bone, is due tomuta-

tions in CNNM4, a gene implicated in Ca2þ control

through Mg2þ exchange at GUCA1A.34 Novinec et al.

also showed that SMOC1 binds many proteins, including

C-reactive protein (CRP [MIM 123260]), fibulin-1 (MIM
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135820), and vitronectin (MIM 193190).37

Fibulins are proteins involved in elastic-

fiber assembly, cell proliferation, migration,

adhesion, and angiogenesis, in which fibu-

lin-1 stabilizes newly formed blood

vessels.38,39 SMOC1 has also been involved

in osteoblast differentiation and SMOC1

knockdown by shRNA-inhibited minerali-

zation and expression of osteoblast-differ-

entiation markers in human bone-

marrow-derived mesenchymal stem cells.40

Interestingly, the same authors also identi-

fied EFEMP1 (MIM 601548), a member of

the fibulin family, as implicated in osteo-

blast differentiation. Mutation in EFEMP1

causes malattia leventinese or Doyne

honeycomb retinal dystrophy (MIM
126600), a disease characterized by the early development

of drusen, similar to age-related macular degeneration.41 It

is not known how SMOC1 participates in the development

of bones, but on the basis of the phenotype associated with

Waardenburg anophthalmia, it may be required for proper

individualization of hand and foot rays.

In the zebrafish, smoc1 is highly expressed in the brain,

choroidal fissure, pharyngeal arches, and somites. Knock-

down experiments showed a coloboma at 2 dpf. At 5 dpf,

the eye was microphthalmic and the brain showed gross

malformations. Additional studies need to be done to see

whether it is also implicated in the development of fin

rays. Our analysis showed that Waardenburg anophthal-

mia syndrome is genetically heterogeneous. In addition

to the previously described locus on chromosome 10, we

identified a second locus on chromosome 14 and showed

that mutations in SMOC1 also cause this syndrome.
Supplemental Data

Supplemental Data include one figure and two tables and can be
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